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Generally, the first step in modeling molecular magnets involves obtaining the low-lying eigenstates of a
Heisenberg exchange Hamiltonian which conserves total spin and belongs usually to a non-Abelian point
group. In quantum chemistry, it has been a long-standing problem to target a state which has definite total spin
and also belongs to a definite irreducible representation of the point group. Many attempts have been made
over the years, but unfortunately these have not resulted in methods that are easy to implement, or even
applicable to all point groups. Here we present a general technique which is a hybrid method based on
valence-bond basis and the basis of the z-component of the total spin, which is applicable to all types of point
groups and is easy to implement on a computer. We illustrate the power of the method by applying it to the
molecular magnetic system, Cu6Fe8, with cubic symmetry. We emphasize that our method is applicable to spin
clusters with arbitrary site spins and is easily extended to fermionic systems.
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I. INTRODUCTION

The field of molecular magnetism has witnessed an explo-
sion in the number of systems that exhibit molecular mag-
netic phenomena such as quantum resonant tunneling and
photomagnetism �see reviews1,2�. This explosive growth has
also presented challenges to theorists modeling these sys-
tems. The problems encountered by theorists begin with
modeling the nature of exchange interactions between pairs
of magnetic ions. While an electronic many-body Hamil-
tonian has to be solved for determining the nature of ex-
change, this is often circumvented by guessing the nature of
exchange based on the knowledge of the ligands, electron
configuration of the transition metal ion and the geometry of
the complex. The second problem concerns obtaining the
eigenstates of the exchange Hamiltonian,

Hex = − �
�ij�

JijŜi · Ŝj , �1�

describing the coupling between pairs of magnetic ions �ij�
with exchange constant Jij. Often, the Fock space of the
Hamiltonian of the magnetic system could be very large �in
the case of Mn12Ac, it is as large as a hundred million4 and in
Fe12 ferric wheel, it is more than two billion3� and obtaining
even a few low-lying states of the Hamiltonian could pose a
challenge. Since the exchange Hamiltonian conserves both
total spin and z-component of total spin �MS�, the problem
can be simplified by specializing the basis, in which the ma-
trix representation of the Hamiltonian is sought, to the case
of fixed z-component of the total spin. Further simplification
could come from exploiting spatial symmetries of the model.
An ideal situation would correspond to one in which all the
spin and spatial symmetries are utilized to construct a fully
symmetrized basis to minimize the size of the Hamiltonian
matrix that needs to be diagonalized.

The conservation of the Stot
z , the total z-component of spin

is trivially achieved by choosing from the Fock space, states

whose total MS value corresponds to the desired value. This
is possible since individual Si

z operators commute with the
Stot

z operator. It is also quite straightforward to set up the
Hamiltonian matrix in this basis and solve for a few low-
lying states in cases where the Hilbert space is spanned by a
few hundred million states.30 However, the exchange Hamil-
tonian of molecular magnet often consists of interactions that
are geometrically frustrated. In such a system, the ground-
state spin is often not predictable and one needs to obtain the
lowest state in each total spin subspace to fix the spin of the
ground state. Besides, low energy states with different total
spins lie close in energy and it is numerically difficult to
achieve convergence to nearly degenerate eigenstates unless
they can be dispersed into orthogonal Hilbert spaces. We can
partially alleviate this problem by employing the parity sym-
metry of the exchange Hamiltonian. This symmetry corre-
sponds to rotation of all the spins in the system around the x
or y axis by an angle � which leaves the Hamiltonian invari-
ant in the MS=0 sector.

�H,Ry���� = 0, where Ry��� = e−i�Ŝy/�. �2�

The action of parity operator �P̂� on a basis state with site ms
values m1, m2, m3 . . . .mn is to flip all the spins in the system,
i.e.,

P̂�m1m2 . . . mn� = �− 1���− m1 − m2 . . . − mn� , �3�

where

� = �
i

si.

Thus, the parity operator which conserves the total MS
value, only when MS=0, is a symmetry element of the
Hamiltonian matrix in the MS=0 sector. In the general case
where the individual objects have spin si, if �isi is even then
symmetric �antisymmetric� combination of the basis states,
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under parity, will span a space of even �odd� total spin states.
The method can be extended easily to systems which allow
only half odd-integer total spin. Since in most cases, the
lowest excited state usually has a spin which is one different
from that of the ground state, this symmetry renders it easy
to obtain the spin gap accurately. However, the size of the
Hilbert space is only reduced by approximately half of the
size of the full MS=0 space by using this symmetry. Use of
parity is still advantageous as exploiting spatial symmetries
is straightforward, even when the point group is not Abelian.

Construction of spin adapted configuration state functions
�CSFs� has been a problem of long-standing interest in quan-
tum chemistry. The CSFs are simultaneous eigenstates of
total Stot

2 and Stot
z and setting up the Hamiltonian matrix in

this basis leads to matrices of smaller size besides allowing
automatic labeling of the states by the total spin. Besides, the
eigenvalue spectrum is enriched, since we can obtain several
low-lying states in each total spin sector. This is in contrast
to obtaining several low-lying states in a given total MS sec-
tor as the latter would have states with total spin Stot�MS.
There are many ways of achieving this task.5 The simplest
method involves setting up the matrix of the total spin op-
erator, Stot

2 , in the CSF basis of fixed MS and obtaining the
eigenstates corresponding to a given total spin value; these
eigenstates which are linear combinations of the constant MS
CSFs are then the spin adapted CSFs. For large systems this
method is not practical. Another method which is sometimes
used is the Löwdin projection method6,7 in which a projec-
tion operator PS, given by

PS = �S��S�Ŝ2 − S��S� + 1�� , �4�

is used to project out all undesired states of spins S� except
the spin S of interest from a given CSF. The methods that
have been extensively in vogue for construction of the spin
adapted CSFs are the graphical unitary group approach
�GUGA�,8–10 symmetry group graphical approach �SGGA�,11

and the valence-bond �VB� approach.12–15,17 In the GUGA
method, the total spin adapted CSFs are represented as Shav-
itt graphs or Paldus arrays and the matrix element of a term
�which corresponds to a generator of the unitary group� in
the Hamiltonian between any two CSFs is obtained by com-
paring the two arrays or graphs corresponding to the CSFs.
Similarly, graphs are used to represent spin adapted CSFs in
the SGGA method and rules for computing matrix elements
between two CSFs of a term in the Hamiltonian have been
derived �see for example reviews18–20�. Using these methods
it is possible to carry out large scale configuration interaction
�CI� calculations. While in all these methods the total spin
symmetry is fully exploited, spatial symmetry adaptation is
not an easy task.18 The CSFs are each built up of several
orbitals with each orbital in general transforming according
to some specific irreducible representation of the point group
of the system. The direct product of the irreducible represen-
tations of a general symmetry group is not a single irreduc-
ible representation of the same group. Thus it is not possible
to associate an irreducible representation with a given CSF
unless the point group to which the system belongs is an
Abelian group.21,22 Otherwise, symmetry operation on a CSF

leads to a linear combination of many CSFs which is in
general difficult to construct. For small dimensionalities of
the Hilbert spaces, matrix representation of the symmetry
operators can be obtained in the space of CSFs. The projec-
tion matrix for a given irreducible representation can be con-
structed from these matrices and from these, the symmetry
adapted CSFs.23 However, this approach is of limited value
in real large scale problems.18 In quantum chemical literature
this difficulty is bypassed by dealing with Abelian subgroups
of the system’s point group.24,25 However, this can lead to
ambiguities in assigning the irreducible representation of a
state.26 Among the methods for constructing spin adapted
CSFs, the VB method is the simplest and will be considered
in Sec. II.

The ultimate goal of symmetry adaptation is to be able to
exploit the full spatial and spin symmetries of the system,
both for computational efficiency and for labeling of the state
by the irreducible representation to which it belongs. In Sec.
II, we give a brief introduction to the symmetrized VB ap-
proach that was developed earlier and highlight the difficul-
ties associated with the technique.16 In Sec. III, we present a
hybrid VB-constant MS method which overcomes these dif-
ficulties. In Sec. IV, we illustrate an application of this
method to a magnetic spin cluster. In Sec. V, we summarize
and discuss the future prospects for the technique.

II. SYMMETRIZED VB APPROACH

Exploiting the invariance of both total spin and its
z-component is nontrivial, since eigenstates of the Stot

z opera-
tor expressed as a product of the eigenstates of all the Si

z

operators are not simultaneously eigenstates of the Stot
2 opera-

tor. The situation is further complicated by the fact that in a
molecular magnet, often the spins of all the constituent mag-
netic centers, si, are not the same. In such a situation, the
easiest way of constructing the spin adapted functions is the
diagrammatic VB method based on modified Rumer-Pauling
rules.12,14 In this method, a magnetic site with a given spin
“si” is replaced by 2si spin-half objects. To obtain a state
with total spin S from N such spin-1/2 objects from all the
magnetic centers, �N−2S� of these spin-1/2 objects are sin-
glet spin paired explicitly, subject to the following restric-
tions: �i� there should be no singlet pairing of any two spin-
half objects belonging to the same magnetic center �this
ensures that the 2si objects are in a totally symmetric
combination29�, �ii� a total of 2S spin-half objects are left
unpaired, �iii� when all the spin-half objects are arranged at
the vertices of a regular polygon with number of vertices
equal to number of spin-half objects, N, and straight lines are
drawn between spin paired vertices, there should be no inter-
secting lines in the resulting diagram and �iv� when all the
spin-half objects are arranged on a straight line and lines are
drawn between spin paired objects, these lines should not
enclose any unpaired spin-1/2 object. These rules follow
from the generalization of the Rumer-Pauling rules to objects
with spin greater than 1/2 and total spin greater than zero.
The set of diagrams which obey these rules would henceforth
be called “legal” VB diagrams. Some legal VB diagrams are
shown in Fig. 1. A line in the VB diagram between two
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spin-1/2 objects i and j corresponds to the state ��i� j
−�i� j� /	2 where we choose � to correspond to �↑ � and � to
�↓ � orientations of the spin. The phase convention assumed
is that the ordinal number “i” is less than the ordinal number
“j.” The 2S spin-1/2 objects k1 k2 k3 . . . . k2S which are left
unpaired can be taken to represent the state with MS=S given
by �k1

�k2
�k3

. . . �k2s
. VB states corresponding to other MS

values for this state with spin S can be obtained by operating
the Stot

− operator on the state by the required number of times.
Since the exchange Hamiltonian is isotropic, each eigenstate
in the spin S is �2S+1� fold degenerate and it is sufficient to
work in the subspace of the chosen MS value. The VB state
corresponding to a given diagram is a product of the states
representing the constituent parts of the diagram. On a com-
puter, a legal VB diagram of any spin can be uniquely rep-
resented by an integer of 2N bits with a one bit representing
the beginning of a singlet line and a zero bit the ending of a
singlet line. The unpaired spins are also represented as one-
bits. Figure 1 also shows bit representation of typical VB
diagrams.

To spatially symmetrize a VB basis, it is necessary to
know the result of a symmetry operator operating on a legal
VB diagram. In general, the resultant of such an operation on
a legal VB diagram is an “illegal” VB diagram. An example
of this is shown in Fig. 2.16 An illegal VB diagram can be
decomposed into a linear combination of legal VB diagrams,
a process that is computationally demanding. In practice, the

VB space is broken down into smaller invariant subspaces of
the symmetry group and within each invariant space, a sym-
metrized linear combination of the VB basis is constructed.
However, the structure of the invariant spaces is very com-
plex and constructing disjoint invariant spaces is not simple.
While constructing symmetrized VB basis, a projection op-
erator for a given symmetry representation is employed to
project the symmetrized linear combinations by acting on
each of the VB states in the invariant space. While the num-
ber of linearly independent symmetry combinations of a
given representation is known a priori, the actual linear com-
binations are obtained by carrying out Gram-Schmidt or-
thonormalization of the projected states. However, since the
VB diagrams are not orthogonal the orthonormalization pro-
cess is both computationally involved and time-consuming.

Furthermore, in case of molecular magnets containing
magnetic ions with spin greater than half, the exchange op-
erator between such high-spin centers also generates “ille-
gal” VB diagrams as it involves non-nearest-neighbor ex-
change interactions between constituent elementary spins.14

To illustrate, exchange between a center A with say spin one
and a center B with spin 3/2, SA ·SB, is expressed as �sA1
+sA2

� · �sB1
+sB2

+sB3
�. These exchange terms operate on a VB

diagram with constituent elementary spins which are non-
nearest neighbors and in general generate illegal VB dia-
grams as per the VB rules. Decomposition of the resultant
illegal VB diagrams to legal VB diagrams could present a
serious bottleneck in computing the Hamiltonian matrix ele-
ments. In view of these difficulties, a fully symmetrized VB
approach to solving a Heisenberg exchange Hamiltonian par-
ticularly in the context of molecular magnets is not feasible.

III. HYBRID METHOD BASED ON VB BASIS
AND CONSTANT MS BASIS

In the constant MS basis, a basis state of an ensemble of
spins s1, s2 , ¯ ,sN is represented by a direct product of the
ms states of each spin such that the total MS=�mi. The basis
states in the constant MS representation are orthonormal by
construction. Given the definition of a line in the VB dia-

FIG. 1. Above VB diagram shows spin pairings to yield a total
spin Stot=0 state from ten spin-1/2 objects, constituent elementary
spins of two spin 1 and two spin 3/2. Its bit representation corre-
sponds to unique integer I=856. The bottom VB diagram shows a
Stot=1 state, the corresponding unique integer is I=888.

FIG. 2. The effect of operation by the C3
1 symmetry operator about the �1,8� axis. The top left portion shows the initial and final VB

diagrams with spin couplings between vertices of the cube shown as dark lines. The bottom left portion shows the same states as spin
couplings between vertices of a regular octagon. The resultant is an “illegal” diagram. Decomposing the resultant to “legal” VB diagrams
yields a sum of five VB diagrams shown on the right, with spin couplings between vertices on a cube.
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gram, every VB diagram can be broken up into a linear com-
bination of the constant MS basis states. A VB diagram with
p singlet lines gives rise to 2p basis states in the constant MS
basis. To effect the conversion of VB diagrams to constant
MS functions, each singlet line gives two states; in one state,
the site at which a singlet line begins is replaced by an � spin
and the one at which it ends by a � spin with phase +1 and
in the other the spins are reversed and the associated phase is
−1. Once the VB diagrams are converted to constant MS
basis states with constituent spins, it is possible to associate a
mi value with a composite spin, given by mi= �ni↑−ni↓� /2,
where ni↑ is the number of up-spin halves and ni↓ is the
number of down-spin halves at the site i. However, there is a
normalization constant wi, which follows from Clebsch-
Gordan coefficients, given by

wi = 
 �2si�!
�si + mi� ! �si − mi�!

�−1/2

�5�

for a site with spin si in state mi.
29 We can assume without

loss of generality that the MS value of the VB diagram is also
S. Computationally, finding the transformation of a state in
the VB basis to constant MS basis is straightforward. We
initialize the coefficients in the constant MS basis to zero. We
then decompose, sequentially, each VB diagram into con-
stant MS states and update the coefficient of the basis state of
corresponding MS by adding to it the VB coefficient times
the product of Clebsch-Gordan factors with appropriate
phases. The matrix relating the VB basis states to constant
MS basis states, C, is a V	M matrix, where V is the dimen-
sionality of the VB space and M that of the constant MS
space.

The construction of the projection operator for projecting
all the states of a given symmetry representation in a given
spin space can now be accomplished. We construct the ma-

trix representation of a symmetry operator, R̂, of the point

group in the chosen spin space by operating with R̂ on each
state in the constant MS basis and searching for the resulting
state in the list of MS basis states. Each basis state in this
representation is carried over to another basis state by a sym-
metry operation of the point group. Thus, the matrix RM
though an M 	M matrix contains only one nonzero element
in each row; this makes manipulations with this matrix com-
putationally fast. The knowledge of the C and the RM matri-

ces gives the effect of operating by the symmetry operator R̂
on a VB state as a linear combination of the constant MS
basis states via the matrix BR=CRM. The projection operator
for projecting out the basis states onto a chosen irreducible
representation of the point group 
 is given by

P
 = �
R̂

�

irr�R̂�R̂ , �6�

where �

irr�R̂� is the character under the symmetry operation

R̂ in the character table of the point group of the system.31

The matrix representation of P
 in the mixed VB and con-
stant MS basis is given by

Q
 = �
R

�

irr�R�BR, �7�

where Q
 is a V	M matrix. However, the rows of the ma-
trix Q
 are not linearly independent, since the symmetrized
basis spans a much smaller dimensional Hilbert space. The
exact dimension of the Hilbert space spanned by the system
in the irreducible representation 
 can be known a priori.
The dimension of the space 
, V
, is given by

V
 = �d
/h��
R̂

��R̂��

irr�R̂� , �8�

where d
 is the dimensionality of the irreducible representa-
tion 
, h is the number of elements in the point group, and

��R̂� is the reducible character for the operation R̂. The V


	M projection matrix, P
, of rank V
 is obtained by Gram-
Schmidt orthonormalization of the rows of the matrix Q


until V
 orthonormal rows are obtained. These V
 orthonor-
mal rows represent the projection matrix P
. The M 	M
Hamiltonian matrix, HM, is constructed in the constant MS
basis which is described elsewhere.30 Since the basis states in
this representation are orthonormal, we do not encounter the
problem of “illegal” states as with the VB representation.
The V
	V
 Hamiltonian matrix in the fully symmetrized
basis is given by P
HM �P
�† and one could use any of the
well-known full diagonalization routines to obtain the full
eigenspectrum or use Davidson’s algorithm to get a few low-
lying states of the symmetrized block Hamiltonian in the
chosen spin and symmetry subspace.

The above procedure does not lead to the smallest block
of the Hamiltonian matrix, when the irreducible representa-
tion for the block is degenerate, such as the E, T, or H rep-
resentations. In such cases, it is advantageous to work with
bases that transform according to one of the components of
the irreducible representation. This can be achieved by
choosing an axis of quantization and projecting out basis
states of the irreducible representation which are diagonal
about a rotation about the quantization axes. For example, in
the case of the irreducible representation that transforms as
T, we can choose one of the C3 axes as a quantization axis
and project the basis states of the irreducible representation
using �I+C3

1+C3
−1� as the projection operator. This operator

projects states that transform as the Y1
0 component of the

threefold degenerate irreducible tensor operator. Similarly,
for the E representation, we could use any of the C2 axes as
a quantization axis and use the projection operator �I+C2

1� to
project out basis states that transform as one of its compo-
nents. This is equivalent to projecting out the states which
transform as a given row of the irreducible representation;
the latter are not listed in standard group theoretical character
tables.

Computation of static properties such as spin densities
and spin-spin correlation functions in the eigenstates of the
Hamiltonian is rendered simple due to the orthogonality of
the constant MS basis. The site spin operators such as the
z-component of the spin are diagonal in this basis, while
other operators such as the raising and lowering operators,
though not diagonal in this basis, have a very simple matrix
representation. In computing various properties, the proce-
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dure we follow is to express the eigenstates in the unsymme-
trized constant MS basis and to compute the desired proper-
ties using this representation.

The additional steps involved in the hybrid VB-constant
MS method are �i� constructing the C matrix, whose ith row
contains the coefficients of the constant MS functions appear-
ing in the ith VB basis function. This is a very fast step as the
constant MS states are an ordered sequence of integers and a
VB state with n lines is a linear combination of 2n constant
MS functions. �ii� In the hybrid approach, computation of the
C matrix involves the matrix multiplication,
C��R�


irr�R�RM�=CRM� . The number of arithmetic operations
involved is however very small, since both C and RM� are
sparse matrices. In both constant MS and hybrid approaches
one has to obtain the projection operator P
 by retaining only
the orthogonal rows of the matrix RM� or Q
, respectively.
Since the number of orthogonal rows in Q
 is far fewer than
in RM� , this step is faster in the hybrid approach than in the
constant MS approach by a factor D�
S� /D�
MS

�, where
D�
S� is the dimensionality of the space of the irreducible
representation 
 with spin S and D�
MS

� is similarly the
dimension of the space 
 with constant MS. This advantage
is largely offset by the fact that the RM� matrix in constant MS
basis is more sparse than the Q
 matrix in the hybrid ap-
proach. Computation of the eigenvalues in the constant MS
approach is slower than in the hybrid approach, since
D�
MS

��D�
S� for most S. This advantage may be partially
offset because the Hamiltonian matrix in the hybrid approach
is usually more dense. The memory required for the hybrid
approach is not very different from that of the constant MS
approach since the matrices, though smaller in the hybrid
approach, are slightly denser. The only additional array re-

quired in the hybrid approach is the storage of the C matrix,
which is very sparse. The major advantage of the hybrid
approach is that we can obtain a far richer spectrum, since
we are targeting each spin sector separately, unlike in the
constant MS approach. Thus, if we can obtain, say ten states
in each S sector of the 2n spin-1/2 problem, we would have
10�n+1� unique states compared to the constant MS tech-
nique where many of these spin states would be repeated in
different MS sectors.

IV. APPLICATION TO Cu6Fe8

We have applied the above method to model the
susceptibility behavior of the molecule
��Tp�8�H2O�6Cu6

IIFe8
III�CN�24� �ClO4�4 ·12H2O·2Et2O,27

where Tp stands for hydrotris �pyrazolyl� borate �Fig. 3�. In
this molecule the CuII ions as well as the FeIII are in spin-1/2
state. The eight FeIII ions are at cube corners and the six CuII

ions are on the outward perpendicular to the face centers of
the cube. Each CuII ion is connected to the four nearest FeIII

ions via ferromagnetic exchange interactions. There are no
Fe-Fe or Cu-Cu interactions. The molecule has a spin 7
ground state. This system has a very high symmetry of the
cube and incorporates all the complexities that can be en-
countered in the application of our technique. From the sus-
ceptibility data, the strength of the exchange interaction J
was estimated to be 30 cm−1.27 Because of the high symme-
try of this system, we chose this as an example for applying
our technique. The dimensions of the various subspaces are
given in Table I.

Using the hybrid VB-constant MS method, we have bro-
ken down the space in each total spin sector into basis states

TABLE I. Dimensionalities of the total spin spaces of a system of 14 spin-1/2 objects. D�S� is the
dimensionality of the constant S basis and D�MS� is the dimensionality of the constant MS basis.

S /MS 0 1 2 3 4 5 6 7

D�S� 429 1001 1001 637 273 77 13 1

D�MS� 3432 3003 2002 1001 364 91 14 1

TABLE II. Dimensionalities of various subspaces of the Cu6
IIFe8

III cluster for irreducible representation

.

Stot→

↓ 0 1 2 3 4 5 6 7

A1g 6 32 24 24 9 5 1 1

A2g 13 15 19 8 5 0 0 0

Eg 34 90 90 60 26 10 2 0

T1g 78 165 171 99 39 6 0 0

T2g 66 216 186 138 54 21 3 0

A1u 5 19 13 11 2 0 0 0

A2u 17 20 27 15 10 2 1 0

Eu 36 78 84 48 20 6 0 0

T1u 105 180 219 123 66 15 6 0

T2u 69 186 168 111 42 12 0 0
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that transform as different irreducible representations of the
cubic point group. The dimensionalities of the various sub-
spaces are shown in Table II. The subspaces transforming as
the E representations are broken down into subspaces of half
their dimension by quantizing the system along a C2 axis.
Similarly, the subspaces transforming as the T representa-
tions are broken down into one third their dimensions in
Table II, by using a C3 axis as the axis of quantization.

We have set up the Hamiltonian matrix in each of the
subspaces and obtained all the eigenvalues. We have also
used a constant MS basis and using the full cubic symmetry,
factored the space into various irreducible representations
and obtained all the eigenvalues in each subspace. From the
eigenvectors, we have computed the total spin of the state.
We find a one to one correspondence to numerical accuracy,
between the two sets of calculations. We have also fitted the
�T vs T experimental plot by using the full spectrum of the
Heisenberg Hamiltonian and computing28

�T =
3

8

 g2F�J,T�

1 − zJ�F�J,T�/kBT
� , �9�

where we have taken the g factor to be 2.1, and the ferro-
magnetic exchange constant J to be 27.2 cm−1. Here, �T is
in units of NB. The function F�J ,T� is given by

F�J,T� =
�S �MS

MS
2 exp�− E0�S,MS�/kBT�

�S �MS
exp�− E0�S,MS�/kBT�

, �10�

where E0�S ,MS� is the eigenvalue of the sum of the ex-
change Hamiltonian and the magnetic anisotropy term DSZ

2

and zJ� is the intermolecular exchange interaction. Here we
have assumed that the molecular anisotropy is along the glo-
bal z axis, and this term is treated as a perturbation to the
exchange Hamiltonian in Eq. �1�. In Fig. 4, we show the fit
of the experimental data to the model.

V. SUMMARY AND OUTLOOK

The problem of exploiting total spin invariance together
with spatial symmetries especially of non-Abelian point

groups has been a long-standing one. While full spin sym-
metry adaptation can be achieved by various techniques such
as the use of permutation groups, unitary groups and the VB
method, the last mentioned is the easiest and provides easy
chemical visualization of the basis states. The main objection
to the VB technique had been that the basis is nonorthogonal
and leads to nonsymmetric representation of the Hamiltonian
matrix. However, with the modification of the Davidson’s
algorithm32 to nonsymmetric matrices by Rettrup,33 this ob-
jection has ceased to be important. The ease with which VB
states with any given total spin can be generated from ob-
jects with assorted individual spins is an advantage which far
outweighs the other historical objections to the VB method.

However, even the VB basis suffers from the serious dis-
advantage like all other spin adapted methods when the ques-
tion of full spatial symmetry adaptation comes up. The con-
stant MS basis methods do not suffer from this disadvantage.
In this paper, we have demonstrated, how by combining the
ease of spin symmetry adaptation of the VB method with the
spatial symmetry exploitation of the constant MS methods,
we can devise a scheme which is fully spin and spatial sym-
metry adapted. This has been possible because of the ease of
transformation of the VB basis to the constant MS basis. We
have demonstrated the power of the method by applying it to
the exchange Hamiltonian of the molecular magnet Cu6Fe8
which has cubic symmetry. We note that the hybrid VB-
constant MS method also allows easy manipulation of the
eigenstates of the Hamiltonian for computing properties. The
method described here can easily be extended to fermionic
systems and should provide a significant improvement for
obtaining exact eigenstates of spin conserving model Hamil-
tonians.
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FIG. 3. Schematic of Cu6Fe8 cluster. The filled and open circles
correspond to Fe and Cu �both spin-1/2� sites, respectively. The
lines represent the exchange coupling between various spin sites.
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FIG. 4. Fit of the �T vs T plot for the Cu6
IIFe8

III cluster. The best
fit parameters are J=27.2 cm−1 �ferromagnetic�, zJ�=
−0.008 cm−1 �antiferromagnetic�, D=−0.15 cm−1, and g=2.1.
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